Periodic Wave Solutions of a Generalized KdV-mKdV Equation with Higher-Order Nonlinear Terms
نویسنده
چکیده
The Jacobin doubly periodic wave solution, the Weierstrass elliptic function solution, the bell-type solitary wave solution, the kink-type solitary wave solution, the algebraic solitary wave solution, and the triangular solution of a generalized Korteweg-de Vries-modified Korteweg-de Vries equation (GKdV-mKdV) with higher-order nonlinear terms are obtained by a generalized subsidiary ordinary differential equation method (Gsub-ODE method for short). The key ideas of the Gsub-ODE method are that the periodic wave solutions of a complicated nonlinear wave equation can be constructed by means of the solutions of some simple and solvable ODE which are called Gsub-ODE with higherorder nonlinear terms.
منابع مشابه
The modified extended tanh-function method and its applications to the generalized KdV-mKdV equation with any-order nonlinear terms
In this article we apply the modified extended tanh-function method to find the exact traveling wave solutions of the generalized KdV-mKdV equation with any order nonlinear terms. This method presents a wider applicability for handling many other nonlinear evolution equations in mathematical physics.
متن کاملExact solutions for the family of third order Korteweg de-Vries equations
In this work we apply an extended hyperbolic function method to solve the nonlinear family of third order Korteweg de-Vries (KdV) equations, namely, the KdV equation, the modified KdV (mKdV) equation, the potential KdV (pKdV) equation, the generalized KdV (gKdV) equation and gKdV with two power nonlinearities equation. New exact travelling wave solutions are obtained for the KdV, mKdV and pKdV ...
متن کاملSolitary wave solutions for a generalized KdV–mKdV equation with distributed delays∗
In the past three decades, traveling wave solutions to the Korteweg–de Vries equation have been studied extensively and a large number of theoretical issues concerning the KdV equation have received considerable attention. These wave solutions when they exist can enable us to well understand the mechanism of the complicated physical phenomena and dynamical processes modeled by these nonlinear e...
متن کاملExact Solutions for a Generalized KdV-MKdV Equation with Variable Coefficients
By using solutions of an ordinary differential equation, an auxiliary equationmethod is described to seek exact solutions of variablecoefficient KdV-MKdV equation. As a result, more new exact nontravelling solutions, which include soliton solutions, combined soliton solutions, triangular periodic solutions, Jacobi elliptic function solutions, and combined Jacobi elliptic function solutions, for...
متن کاملNew Jacobi Elliptic Function Solutions for Coupled KdV-mKdV Equation
A generalized (G ′ /G)-expansion method is used to search for the exact traveling wave solutions of the coupled KdV-mKdV equation. As a result, some new Jacobi elliptic function solutions are obtained. It is shown that the method is straightforward, concise, effective, and can be used for many other nonlinear evolution equations in mathematical physics.
متن کامل